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Abstract

The introduction of optical tracking data across sports has given rise to the ability

to dissect athletic performance at a level unfathomable a decade ago. One specific area

that has seen substantial benefit is sports science, as high resolution coordinate data

permits sports scientists to have to-the-second estimates of external load metrics, such

as acceleration load and high speed running distance, traditionally used to understand

the physical toll a game takes on an athlete. Unfortunately, collecting this data requires

installation of expensive hardware and paying costly licensing fees to data providers,

restricting its availability. Algorithms have been developed that allow a traditional

broadcast feed to be converted to x-y coordinate data, making tracking data easier to

acquire, but coordinates are available for an athlete only when that player is within the

camera frame. Obviously, this leads to inaccuracies in player load estimates, limiting

the usefulness of this data for sports scientists. In this research, we develop models

that predict offscreen load metrics and demonstrate the viability of broadcast-derived

tracking data for understanding external load in soccer.

1 Introduction

In order to reduce fatigue, prevent injury, and improve performance, sports scientists seek

to monitor the physical impact that participation in training and competition has on an

athlete. A number of different metrics, broadly referred to as load metrics, have been used

to try and quantify the intensity of a given activity for an athlete. These metrics consist

of two general categories: internal and external. Halson (2014) defines internal load as

“the relative physiological and psychological stress imposed” on an athlete. Internal load

measures are not treated in this work and we make no further note of them other than to
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mention that they exist and include, for example, individual reporting of perceived exertion,

heart-rate-derived training impulse, and summated-heart-rate-zones (Borresen and Lambert,

2008; McLaren et al., 2018). External load is defined as “the work completed by the athlete,

measured independently of his or her internal characteristics” (Halson, 2014). Metrics in

this category include distance measures (both total distance over a training session or match

and distance traveled stratified by intensity of the activity) (Coutts and Duffield, 2010;

Rampinini et al., 2009; Dalen et al., 2016; McLaren et al., 2018) and acceleration-derived

measures (Dalen et al., 2016; Delaney et al., 2016; McLaren et al., 2018; Nicolella et al., 2018;

Boyd et al., 2011). Existing methods for accurately capturing external load metrics consist

of an athlete wearing a device, whether that be a global positioning system (GPS) (Sykes

et al., 2013; Mullen et al., 2019) or local positioning system (LPS) tracker (Vázquez-Guerrero

et al., 2019), or an accelerometer (Boyd et al., 2011), which can give accurate readings of

instantaneous velocity and acceleration. However, it is not always possible for an athlete to

wear such a device, and so optical tracking data has been used as an alternative means to

capture measures of external load (Gregson et al., 2010).

Since its initial introduction in soccer by Prozone in 1999 (Medeiros, 2017), multicamera

optical tracking data has spread across a variety of sports, providing detailed location data

for players multiple times per second. The prevalance of this data allows sports analysts to

move beyond the limitations of box score statistics, capturing tactics, strategy, and nuance in

a manner that is impossible with the simple enumeration of discrete events. This type of data

allows analysts to move from simply noting when an assist occurred to answering questions

like: “where were the assisting players teammates when the assist occurred?”, “what type

of defensive pressure was the assist made under?”, and “what types of actions increase the

likelihood of an assisted goal?” The value of this data is shown clearly by Cervone et al.

(2016), who introduced the idea of expected possession value (EPV) by using tracking data

from the National Basketball Association to show how the value of a possession evolves over

time, accounting for contextual information like which players were on the court, where they

were located, and potential actions. This EPV framework was later extended to soccer by

Fernández et al. (2019), who were able to use it to show, as just one example, where space

was being created on the pitch and how space creation increased or decreased the value of a

possession.

Tracking data is useful for sports scientists because it allows them to derive metrics related

to distance, speed and acceleration that serve as a proxy for the stress placed on a player’s

body as a result of their athletic performance. Because the equipment to produce this data

is fixed in the arena and not hampered by either league rules or player cooperativeness, this

results in a much more expansive sample of player load than is possible via wearable devices.
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However, despite the distinct advantages provided by multicamera optical tracking data two

extant issues remain: exclusivity and sparsity. This data is exclusive because obtaining it

requires installation of expensive hardware and paying large licensing fees, restricting its

availability to only the most elite leagues. The data is sparse in the sense that it has become

widespread only in recent years, preventing historical comparison. As a result, any ability

to draw conclusions about load metrics and their relationship to health outcomes is limited.

Broadcast-derived tracking data has the capacity to overcome both of these problems because

it allows coordinates to be extracted from regular broadcast video using computer vision

techniques (Lu et al., 2013). This eliminates the need to install special cameras and has the

potential to provide x-y coordinate data for any game with a video feed.

Despite its exciting possibility, broadcast-derived tracking data comes with one glaring

issue: coordinate data is only available for a player as long as they are within the camera

frame. Our purpose in this paper is to assess the viability of broadcast-derived tracking data

for estimation of a variety of external load metrics commonly used across sports. Specifically,

our focus is on estimating load metrics during the time that a given player is offscreen. We do

this by using games for which complete multicamera tracking data is available, and manually

censoring observations to emulate the broadcast-derived tracking data. Approaching the

problem in this way allows us to establish a ground truth, answering definitively, given that

the broadcast tracks are accurate, whether or not broadcast-derived tracking data can be

used to assess external load.

2 Methods

2.1 Data

Our data comes from 18 of the 19 home games played by Chelsea FC in the 2014-15 English

Premier League and includes information for 248 players (this number does not include goal-

keepers, which are excluded from our analysis). The data contains complete x-y coordinate

data for all players in each game at a frequency of 10 measurements per second, providing a

continuous track for a player for the entire time he was in the game, with a break at match

halftime. Additionally, the data includes event information, which consists of the location

and description of actions such as a touch, pass or tackle. In order to emulate the broadcast

derived tracking data while retaining true offscreen values, we simulate a camera track by

linearly interpolating between event locations and place a 40 × 40 meter window centered

on the camera track. Player locations outside of the window are treated as unobserved, and

metrics calculated from these censored tracks are the values we predict in this paper. Each
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time the track transverses the edge of the camera window, we split the multicamera track

into a new segment, which we refer to as a subtrack, and assign it a unique ID. This pro-

cess results in 149,680 subtracks generated from an original 820 tracks, giving an average of

8315.6 (+/- 411.9) subtracks per game from a median of 45.5 (range=44-47) original player

tracks per game. The median subtrack length is 17.0 m (range=0.0-830.1 m) with a median

time of 8.1 s (range=0.1-556.7 s). Subtrack information is augmented by player position

information scraped from transfermarkt.com, with each player classified as either a defender

(n = 85), midfielder (n = 85), or forward (n = 78).

In order to make predictions a variety of features were constructed from the tracks, at

both the subtrack level and aggregated to the game level. For each subtrack, we record the

x and y location for where the player left and re-entered the camera window and calculate

the Euclidean distance and time elapsed between them. Distance, velocity, and acceleration

are calculated for each 0.1 second interval, and used to calculate the load metrics detailed

below as well as average velocity and average absolute acceleration in the 2 second intervals

preceding and following each subtrack. The raw accelerations exhibit some unrealistic values,

with some instantaneous accelerations greater than 50 m/s−2, so in order to reduce this noise,

we smooth the accelerations using a Nadaraya-Watson kernel smoother (Nadaraya, 1964;

Watson, 1964). At the game level, most of the features consist of the load metrics calculated

for the observed portion of the game, but we also calculate the total time in seconds that a

player was censored, percent of playing time a given player was censored, and their average

observed velocity.

2.2 Player load metrics

The suite of external load metrics we consider in this work were selected because of their use

throughout the literature (see, for example, Varley and Aughey (2013); Gabbett and Ullah

(2012); Dwyer and Gabbett (2012); Johnston et al. (2014); Dalen et al. (2016); Borresen and

Lambert (2008); McLaren et al. (2018)). Because specific definitions of load metrics vary

wildly throughout the literature, we provide definitions for the metrics we use in Table 1.

Note that although we are only making predictions for the eight load metrics outlined in

Table 1 that they fall into the three broad categories of distance, velocity, and acceleration

derived measures. In general, any external load metric that falls into one of these cate-

gories can be calculated from broadcast-derived tracking data, though prediction accuracy

for specific censored metrics should be assessed individually.

Exploratory analysis of this data and the calculated metrics reveals two patterns worth

highlighting. The first is that there is a very strong correlation between the amount of
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censored playing time in a game and most of the censored load metrics, as shown in Figure

1 for total acceleration. When keepers are removed from the data, the values for Pearson’s

correlation coefficient between elapsed time for a censored subtrack and most of the other

metrics range between 0.596 and 0.998, the exceptions being peak velocity and acceleration

density. This suggests that in many cases fairly good estimates can be obtained by simply

regressing the metric on censored subtrack time. The second pattern becomes clear if we

assume that the censored data is missing completely at random (MCAR) (Rubin, 1974); that

is, we assume that there is no relationship between the pattern of missingness and the values

of the observed and censored load metrics. To illustrate, consider total distance (though

the following relationship holds for the other player metrics). Under this assumption, the

ratio of observed distance, Do, to censored distance, Dc is equivalent to the ratio between

observed time, To, and censored time Tc, or in mathematical notation,

Dc

Do

=
Tc
To
.

This in turn implies that we can estimate Dc by setting Dc = Do
Tc

To
. Because we are simply

scaling the observed metric value by the ratio of censored to observed time, we refer to this as

a scaling estimator. Despite its appealing simplicity, examination of the residuals, shown for

four of the metrics in Figure 2, reveals that the assumption that data is MCAR is incorrect.

We see that residuals become increasingly negative (censored values are overestimated) as

the amount of censoring increases for most of the metrics, with the exception being the

amount of time spent in the slowest velocity band. The systematic differences between

player movement on- and off-camera demonstrated in these plots can be summarized simply

as “players move faster when on camera.”

2.3 Models

In order to establish a baseline level of comparison, we use a linear regression model for each

load metric of the form

yi = β0 + β1Ti + β1xi + ε,

where i indexes the player-match combination, yi is the value of the censored metric at the

game level, Ti is the amount of censored time for the game, xi is the value of the observed

metric at the game level, and ε is a normally distributed error term. The remaining models

that we compare are all fit using gradient boosting (Friedman, 2001) as implemented by the

xgboost package (Chen and Guestrin, 2016) within the statistical programming language

R (R Core Team, 2019). Gradient boosting is an ideal tool for this application for several
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Table 1: External load metric definitions

Category Metric Definition

Distance Total distance Sum of the distance travelled by
an athlete.

High speed distance Sum of the distance travelled by
an athlete with speed between 3.5
and 5.7 m/s.

Very high speed distance Sum of the distance travelled by
an athlete with speed greater than
5.7 m/s.

Velocity Time spent in velocity band [x, y) Number of seconds spent with ve-
locity (m/s), v, in the interval
x ≤ v < y. Intervals considered
are [0, 3.5), [3.5, 5.7), and [5.7,∞),
based on the work of Dwyer and
Gabbett (2012).

Peak x-second velocity Max velocity of average velocities
calculated over x = 1, 3, 5, and 10
second rolling windows.

Acceleration Total Acceleration Sum of the absolute values of ac-
celeration at 0.1 second intervals.

Acceleration density Mean acceleration.
Time spent in acceleration band [x, y) Number of seconds spent with ac-

celeration (m/s2), a, in the inter-
val x ≤ a < y. Intervals consid-
ered are [0.65, 1.46), [1.46, 2.77),
and [2.77,∞), based on the work
of Johnston et al. (2014)
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Figure 1: Censored time versus censored total acceleration. Note that once keepers are re-
moved from the data, the relationship between censored time and censored total acceleration
is almost exactly linear.
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metrics, resulting in negative residuals. This is clear evidence that the way players move on
camera differs systematically from how they move offscreen.
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reasons: it fits a model, then iterates, fitting a model on the residuals of each previous

model until no further improvements can be made, then averages all of the models together,

yielding very accurate predictions; it is flexible because it allows the use of both linear and

nonlinear (tree-based) boosters; and it has the convenient feature of performing automatic

variable selection, permitting us to take a “kitchen-sink” approach and include all potential

predictors for consideration in the model. Additionally, as implemented in xgboost it is

extremely fast, allowing models to be fit to a large amount of data in just a short span of

time.

We compare two different approaches to obtaining game level estimates: predicting the

values for each subtrack individually and then aggregating them to the game level versus

predicting game level metrics directly. We combine these two levels of estimation with three

different models: a linear model with no interactions, a linear model that considers all two-

way interactions, and a random forest model. We train each model on the first thirteen

games of the season, reserving the final five games for testing, which results in 361 player-

match observations in the training set and 138 player-match observations in the test set. We

assess model performance by comparing root mean square predictive error (RMSPE), defined

RMSPE =
√∑

(yi − ŷi)2/n, where ŷi is the predicted value for observation yi and n is the

number of observations, and the coefficient of variation (CV), defined CV = RMSPE/ȳ,

where ȳ =
∑n

i=1 yi/n. In this context CV is useful because it tells us how large the errors

are relative to the values themselves, giving an indication of how much the overall variance

in the data was reduced by the given model.

The predictors included in the various models are denoted in Table 2. All numeric

variables were centered and scaled so that they have a mean of 0 and standard deviation of

1, which, for the linear models, allows us to determine relative significance of each predictor

in the model simply by comparing the size of their associated coefficients.

Here we briefly note that 100% of the peak x-second velocity values in the 18 games

in our data set occur within the camera window, and as such, there is no need to try and

estimate these values for the censored tracks. While it may not always be the case that peak

velocities are always observed, this suggests that any exceptions will be rare, and so peak

velocity is omitted from the subsequent analysis.

3 Results

The full results for each of the predicted metrics at the subtrack and game levels are shown

in Tables 3 and 4, respectively. In all cases, estimating the player metrics at the subtrack

level and then aggregating to obtain game level estimates outperforms making predictions

9



Table 2: Model predictors. Inclusion for consideration in subtrack or game level models
is indicated by the x. All variables that begin with “observed” are measured at the game
level, so an x in the subtrack model column for “observed total acceleration” means that the
sum of the absolute value of accelerations for the entire game is used as a predictor when
estimating individual subtrack outcomes.

Predictor Included at subtrack level Included at game level

player position x x
offscreen time x
censored total time x
offscreen distance x
observed total distance x
average velocity in previous two seconds x
average velocity in following two seconds x
average absolute acceleration in previous two seconds x
average absolute acceleration in following two seconds x
observed average acceleration x x
observed total acceleration x x
observed average velocity x x
observed high speed distance x x
observed very high speed distance x x
observed time in velocity band [0, 3.5) x x
observed time in velocity band [3.5, 5.7) x x
observed time in velocity band [5.7,∞) x x
observed time in acceleration band [0.65, 1.46) x x
observed time in acceleration band [1.46, 2.77) x x
observed time in acceleration band [2.77,∞) x x
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purely at the game level, as seen in the lower RMSPE and CV values. For seven of the

eleven player load metrics under consideration, the linear model with interactions performs

the best, though the random forest has the lowest RMSPE and CV in three cases. Predicting

acceleration density is the only case where the linear model with no interactions results in

the best predictions.

CV values are less than or equal to 0.10 for six of the eleven models, indicating a significant

reduction in standard error relative to the overall size of the response. The largest CV is

0.31, for both very high speed distance and time in velocity band [5.7,∞), both outcomes

for which the nonlinear model performs the best. This result can be explained when we

consider that the correlations of these two metrics with censored total time are 0.599 and

0.605, respectively, indicating that these predictions do not benefit from the very strong

relationship with censored total time that the other metrics do. Considering the RMSPE

values themselves helps us understand just how well each metric is being predicted. For

example, despite its CV of 0.31, the RMSPE for time in velocity band [5.7,∞) is still only

6.4 seconds. The RMSPE for total distance is 183 meters, minimal error considering players

on average travel 3524 meters in each game.

An examination of the residuals for a given response variable against the percent of data

that is censored, shown for total distance in Figure 3, is illuminating. Unsurprisingly, we

see that the variability in the predictions increases with the amount of censored data, but

in general the predictions appear unbiased, and even when as much as 50% of the data is

missing, the range of the residuals being approximately (-500, 500) indicates a significant

reduction in variability when compared to the empirical standard deviation for the response

of 1506 meters. Figure 3 also shows a clear demarcation in the amount of censoring across

the various positions, with defenders experiencing the most time off camera and midfielders

spending the most time within the camera frame.

Due to the nature of gradient boosting, our ability to make inference is limited, but we

can get a sense of the impact of certain predictors by taking the top five covariates with either

the greatest importance (for the random forest) or largest coefficients1 (for the linear models)

for each model and tallying how frequently each is included. Offscreen time is included as

the first or second most significant variable in the models for all eleven load metrics, a fact

foreshadowed by the strong correlation noted in Section 2.2. Offscreen distance and position

are both top variables in eight of the eleven models, while the velocity and acceleration

entering and leaving the camera window are in the top five for four of the models, primarily

the distance metrics. All remaining predictors occur in the top five for just three or fewer of

the load metrics.

1Recall that all variables were centered and scaled, making this a valid comparison.
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4 Practical Applications

Broadcast-derived tracking data has tremendous potential and in this work we have demon-

strated its viability for use when evaluating player load in soccer. Because we used out-of-

the-box statistical methods with no modification, this type of modeling is widely accessible

and should be relatively easy to adopt in practice. Examination of RMSPE and CV values

shows that in general, predictions for the various load metrics are very accurate. Some of

the stratified metrics, i.e., time in velocity band [5.7,∞) and very high speed distance, have

larger CV values due to the small amount of time players spend in these states, but the

RMSPE in these cases is still low enough for use in a practical setting. One consideration

when applying our results is how estimate accuracy varies by position and across players.

For example, when considering total distance, the RMSPE for defenders, midfielders, and

forwards is 216, 164, and 160, respectively. This is driven primarily by differences in cen-

soring rates, with forwards and midfielders being censored just 43.4 and 35.4 percent of the

time, versus 52.5 percent of the time for defenders. Censoring rates also vary significantly

from player to player, ranging from 19.7 to 60.04 percent of data censored. Accounting for

differences in censoring can increase prediction accuracy and improve the efficacy of using

broadcast-derived tracking data for external load metric estimation in soccer.
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Table 3: RMSPE and CV for the base model and subtrack level models on each of the responses

Base model Linear model Linear model w/ int Random forest
RMSPE CV RMSPE CV RMSPE CV RMSPE CV

total distance (m) 288.2 0.08 202.0 0.06 188.3 0.05 183.0 0.05
high speed distance (m) 164.5 0.22 113.8 0.15 106.0 0.14 113.4 0.15
very high speed distance (m) 60.4 0.44 53.4 0.39 53.3 0.39 42.8 0.31
time in velocity band [0, 3.5) (s) 49.9 0.03 30.4 0.02 29.1 0.02 29.8 0.02
time in velocity band [3.5, 5.7) (s) 37.8 0.22 26.4 0.15 24.5 0.14 26.4 0.15
time in velocity band [5.7,∞) (s) 8.8 0.43 7.9 0.38 7.9 0.38 6.4 0.31
total acceleration (m/s2) 2473 0.11 1448 0.07 1365 0.06 1366 0.06
acceleration density (m/s2) 0.140 0.12 0.113 0.10 0.129 0.11 0.119 0.11
time in acceleration band [0.65, 1.46) (s) 34.9 0.06 25.8 0.05 25.7 0.05 29.5 0.05
time in acceleration band [1.46, 2.77) (s) 45.3 0.13 30.6 0.09 27.8 0.08 29.5 0.05
time in acceleration band [2.77,∞) (s) 36.5 0.22 21.5 0.13 20.9 0.13 22.3 0.13
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Table 4: RMSPE and CV for the base model and game level models on each of the responses

Base model Linear model Linear model w/ int Random forest
RMSPE CV RMSPE CV RMSPE CV RMSPE CV

total distance (m) 288.2 0.08 257.0 0.08 267.1 0.08 286.5 0.08
high speed distance (m) 164.5 0.22 150.6 0.20 153.1 0.21 159.1 0.21
very high speed distance (m) 60.4 0.44 60.4 0.44 61.7 0.45 68.1 0.50
time in velocity band [0, 3.5) (s) 49.9 0.03 41.4 0.02 42.0 0.02 60.3 0.03
time in velocity band [3.5, 5.7) (s) 37.8 0.22 34.8 0.20 35.2 0.20 37.5 0.22
time in velocity band [5.7,∞) (s) 8.8 0.43 9.0 0.43 9.1 0.44 9.91 0.48
total acceleration (m/s2) 2473 0.11 1748 0.08 1658 0.08 2227 0.10
acceleration density (m/s2) 0.140 0.12 0.126 0.11 0.140 0.12 0.156 0.14
time in acceleration band [0.65, 1.46) (s) 34.9 0.06 25.7 0.05 27.4 0.05 38.1 0.07
time in acceleration band [1.46, 2.77) (s) 45.3 0.13 32.3 0.09 31.7 0.09 40.4 0.12
time in acceleration band [2.77,∞) (s) 36.5 0.22 26.7 0.16 25.3 0.15 29.2 0.17

15



References

Borresen, J. and Lambert, M. I. (2008). Quantifying training load: A comparison of subjec-

tive and objective methods. International Journal of Sports Physiology and Performance,

3(1):16–30.

Boyd, L. J., Ball, K., and Aughey, R. J. (2011). The reliability of minimaxx accelerometers

for measuring physical activity in australian football. International Journal of Sports

Physiology and Performance, 6(3):311–321.

Cervone, D., D’Amour, A., Bornn, L., and Goldsberry, K. (2016). A Multiresolution Stochas-

tic Process Model for Predicting Basketball Possession Outcomes. Journal of the American

Statistical Association, 111(514):585–599.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, volume KDD ’16, pages 785–794, San Francisco, California, USA.

Coutts, A. J. and Duffield, R. (2010). Validity and reliability of GPS devices for measuring

movement demands of team sports. Journal of Science and Medicine in Sport, 13(1):133–

135.

Dalen, T., Jorgen, I., Gertjan, E., Havard, H. G., and Ulrik, W. (2016). Player load,

acceleration, and deceleration during forty-five competitive matches of elite soccer. Journal

of Strength and Conditioning Research, 30(2):351–359.

Delaney, J. A., Duthie, G. M., Thornton, H. R., Scott, T. J., Gay, D., and Dascombe, B. J.

(2016). Acceleration-based running intensities of professional rugby league match play.

International Journal of Sports Physiology and Performance, 11(6):802–809.

Dwyer, D. B. and Gabbett, T. J. (2012). Global positioning system data analysis: Velocity

ranges and a new definition of sprinting for field sport athletes. Journal of Strength and

Conditioning Research, 26(3):818–824.

Fernández, J., Bornn, L., and Cervone, D. (2019). Decomposing the Immeasurable Sport :

A deep learning expected possession value framework for soccer. In Sloan Sports Analytics

Conference, pages 1–20.

Friedman, J. (2001). Greedy Function Approximation : A Gradient Boosting Machine. The

Annals of Statistics, 29(5):1189–1232.

16



Gabbett, T. J. and Ullah, S. (2012). Relationship between running loads and soft-tissue

injury in elite team sport athletes. Journal of Strength and Conditioning Research,

26(4):953–960.

Gregson, W., Drust, B., Atkinson, G., and Salvo, V. D. (2010). Match-to-match variability

of high-speed activities in premier league soccer. International Journal of Sports Medicine,

31(4):237–242.

Halson, S. L. (2014). Monitoring Training Load to Understand Fatigue in Athletes. Sports

Medicine, 44:139–147.

Johnston, R., Watsford, M., Pine, M., and Spurrs, R. (2014). Standardisation of acceleration

zones in professional field sport athletes. International Journal of Sports Science and

Coaching, 9(5):1161–1168.

Lu, W. L., Ting, J. A., Little, J. J., and Murphy, K. P. (2013). Learning to track and

identify players from broadcast sports videos. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 35(7):1704–1716.

McLaren, S. J., Macpherson, T. W., Coutts, A. J., Hurst, C., Spears, I. R., and Weston, M.

(2018). The Relationships Between Internal and External Measures of Training Load and

Intensity in Team Sports: A Meta-Analysis. Sports Medicine, 48(3):641–658.

Medeiros, J. (2017). How data analytics killed the Premier League’s long ball game.

Mullen, T., Twist, C., and Highton, J. (2019). Stochastic ordering of simulated rugby match

activity produces reliable movements and associated measures of subjective task load,

cognitive and neuromuscular function. Journal of Sports Sciences, 37(21):1–7.

Nadaraya, E. (1964). On Estimating Regression. Theory of Probability and Its Applications,

9(1):141–142.

Nicolella, D. P., Torres-Ronda, L., Saylor, K. J., and Schelling, X. (2018). Validity and

reliability of an accelerometer-based player tracking device. PLOS ONE, 13(2):1–13.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria.

Rampinini, E., Impellizzeri, F. M., Castagna, C., Coutts, A. J., and Wisløff, U. (2009).

Technical performance during soccer matches of the Italian Serie A league: Effect of

fatigue and competitive level. Journal of Science and Medicine in Sport, 12(1):227–233.

17



Rubin, D. B. (1974). Characterizing the estimation of parameters in incomplete-data prob-

lems. Journal of the American Statistical Association, 69(346):467–474.

Sykes, D., Nicholas, C., Lamb, K., and Twist, C. (2013). An evaluation of the external

validity and reliability of a rugby league match simulation protocol. Journal of Sports

Sciences, 31(1):48–57.

Varley, M. C. and Aughey, R. J. (2013). Acceleration profiles in elite Australian soccer.

International Journal of Sports Medicine, 34:34–39.

Vázquez-Guerrero, J., Jones, B., Fernández-Valdés, B., Moras, G., Reche, X., and Sam-

paio, J. (2019). Physical demands of elite basketball during an official U18 international

tournament. Journal of Sports Sciences, 37(22):1–8.

Watson, G. (1964). Smooth Regression Analysis. Sankhy: The Indian Journal of Statistics;

Series A, 26(4):359–372.

18


	1 Introduction
	2 Methods
	2.1 Data
	2.2 Player load metrics
	2.3 Models

	3 Results
	4 Practical Applications

